
Activation Functions

Sigmoid: σ(x) = 1
1+e−x , dσ

dx
= σ(x)(1 − σ(x))

Output: (0, 1); Not zero-centered; Saturates. Not
for hidden layers. 4 FLOPS/element.

Tanh: tanh(x) = ex−e−x

ex+e−x , d tanh
dx

= 1− tanh2(x)

Output: (−1, 1); Zero-centered; Still saturates.

ReLU: max(0, x), d
dx

=

{
1 x > 0

0 x ≤ 0
Fast con-

verge; No saturation; May ’die’ if x < 0. 1 FLOP.

Leaky ReLU: max(αx, x), α small (e.g., 0.01)
Fixes dying ReLU problem.

ParamReLU: LeakyReLU, but α is learnable.

ELU:

{
x x > 0

α(ex − 1) x ≤ 0
, α > 0 ReLU benefits

+ mean closer to zero. Computational expensive.

GELU: xΦ(x) where Φ is normal CDF. Used in
transformers.

Softmax:ŷi =
ezi∑
j e

zj (For multi-class output)

3×N FLOPs (exp + sum + divide)

Loss Functions

SVM Loss (Hinge):
Li =

∑
j ̸=yi

max(0, sj − syi +∆)

∆ = margin (usually 1). Wants correct class score
higher by ∆.

Softmax Loss (Cross-Entropy):

Li = − log

(
e
syi∑
j e

sj

)
Maximizes probability of

correct class. Comparable to SVM.

Binary Cross-Entropy:
L = −(y log(ŷ) + (1− y) log(1− ŷ))

Regression:
MSE:

∑
i(yi − ŷi)

2, MAE:
∑

i |yi − ŷi|

Optimization

SGD: W = W − α∇WL Simple but slow conver-
gence and noisy updates.

SGD+Momentum:
v = βv + α∇WL

W = W − v

Dampens oscillations, faster convergence.

AdaGrad (adaptive gradient): slow, saddle pt

c = c+ (∇WL)2 W = W − α
∇WL
√
c+ ϵ

Per-parameter LRs; accumulation can stop learn.

RMSProp:

c = β · c+ (1− β)(∇WL)2 W = W − α
∇WL
√
c+ ϵ

Fixes AdaGrad’s diminishing LRs by using exp
moving avg instead of grad accumulation.

Adam:

m = β1m + (1 − β1)∇WL v = β2v + (1 − β2)(∇WL)
2

m̂ =
m

1 − βt
1

; v̂ =
v

1 − βt
2

W = W − α
m̂

√
v̂ + ϵ

Combines 1st and 2nd momentum (RMSProp)
and adaptive LRs. Adds bias corrections.

LR Schedules: Step decay: α0 · γ⌊t/s⌋ Exp de-
cay: α0 · e−kt or 1/t decay: α0

1+kt

Computational Graphs & Backprop

Local Gradients:

• Add:
∂(x+y)

∂x
= 1,

∂(x+y)
∂y

= 1 (Distributor)

• Multiply:
∂(xy)
∂x

= y,
∂(xy)
∂y

= x (Switcher)

• ReLU:
∂ max(0,x)

∂x
= I(x > 0) (Router)

• Max:
∂ max(x,y)

∂x
= I(x > y) (Selector)

Grad Check:
df(x)
dx

≈ f(x+h)−f(x−h)
2h

, h is small

Regularization

L2 Reg: R(W ) = λ
2

∑
W 2. Grad: λW . Penal-

izes large weights; encourages diffuse weights.

L1 Reg: R(W ) = λ
∑

|W |. Grad: λ · sign(W ).
Encourages sparse weights (many exactly zero).

Elastic Net: R(W ) = λ1
∑

|W |+ λ2
∑

W 2

Dropout:
Zero rand activations with prob p during training.

• Scale remaining output: 1
1−p

(inverted drop)

• No dropout at test time
• Prevents neurons co-adaptation; can be seen as

an ensemble of neural nets.

Data Augmentation: Crops, flips, rotations,
color jitter, mixup, cutout

Early Stopping: Stop when val loss increases.
Can prevent overfitting.

Training Issues & Solutions

Gradient Problems

Vanishing Gradients: Causes: Sigmoid/tanh
saturation, deep networks
Solutions: ReLU, residual connections,
He/Xavier, batch norm, use LSTM or GRU

Exploding Gradients: Solution: Gradient clip-
ping (if norm > threshold), good init, batch norm

Weight Initialization

Zero: Bad (neurons learn same features) Small
Random: W ∼ N (0, σ2). Ok for small nets.
Xavier/Glorot: Good for tanh/sigmoid; pre-

serves variance He: W ∼ N (0,
√

2
nin

) Better for

ReLU; accounts for ReLU drop half activations

Troubleshooting

Loss not decreasing: Check gradien, adjust LR
Overfitting: ↑ regulariz, data augment, smaller
model, early stop. Underfitting:
↑ model capacity, train longer, ↓ regularization
Loss explodes: LR too high, bad initialization
No initial progress: LR too low/high, bad init
First layer visualizations: Should show pat-
terns (edges, blobs, textures).

Normalization Layers

Batch Normalization (BN)

x̂ =
x − µB√
σ2
B

+ ϵ
y = γx̂ + β

Trainable Params: 2 × C (γ, β per channel)
For ConvNets: Normalizes per channel across
(N,H,W) dims. Test time: Uses running avg of
µ, σ2 Benefits: Better grad flow, higher LRs, acts
as regularizer, reduces sensitivity to initialization.

Layer Normalization (LN)

Normaliz across features for each sample. Consis-
tent in train/test; effective in RNNs/Transformers

Instance Normalization

Normalizes across H×W per channel and sample.

Convolutional Neural Networks

Convolution Layer

Hyperparams:
K = # filters, F = filter size, S = stride, P = pad

Output Dimensions:

Wout(or Hout) =
Win(or Hin)− F + 2P

S
+ 1

Dout = K Din = #channels input

Output Volume: Wout ·Hout ·K
Parameters: (F 2 ·Din + 1) ·K

FLOPs: O(N · F 2 ·Din ·Dout ·Hout ·Wout)

1x1 Conv: Channel-wise dim reduction, adds
nonlinearity

Depthwise Separable Conv:

• Depthwise: One filter per input channel
• Pointwise: 1x1 conv to mix channels
• Params: F 2Din +DinDout vs. F 2DinDout

Dilated Conv: Expands receptive field without
↑ params. Feff = F + (F − 1)(d− 1)

Transposed Conv: For upsampling
Wout = (Win − 1) · S + F − 2P

Receptive Field r

Single layer: r = F (kernel size)
Stacked layers:

rl = rl−1 + (Fl − 1) ·
l−1∏
i=1

si

where r0 = 1, Fl = kernel size at layer l, si =
stride at layer i
Same stride/kernel: For L layers with same
kernel F and same stride s = 1:

r = 1 + L · (F − 1)

Pooling Layer

F = pool size, S = stride (typically S = F )

Output dims: Same formula as conv with P = 0

Max Pooling: Takes max in window. Gradients
flow only to max element.
FLOPS = Hout ×Wout × C

Avg Pooling: Takes average in window. Gradi-
ents distributed. FLOPS = Hout × Wout × C ×
(k2 − 1), for k × k kernel

Global Avg Pooling:
Averages over entire spatial dimensions.

Params: 0 (no learnable params)

Convolution Properties

• Translation Equivariance:
Shift input → shift output

• NOT Rotation/Scale Invariant
Requires data augmentation for this

• Parameter Sharing: Fewer params than FC
• Local Connectiv: Neurons see local regions
• Hierarchical Features:

Edges → textures → patterns → objects



Parameter Count Formulas

FC: (Din +1)×Dout and O(Nneuron ·Minput)
FLOPS = 2×Nbatch ×Ninput ×Noutput

with bias (2×Ninput − 1)×Noutput +Noutput

Conv2D: (Fh × Fw ×Din + 1)×Dout

Conv3D: (Fdepth × Fh × Fw ×Din + 1)×Dout

BN/LN: 2× C (γ, β trainable per channel.
Otherwise 4 = 2 trainable + 2 non train)

CNN Architecture Tips

• Prefer stacks of small filters (e.g., 3×3) over one
large filter. Deeper, more non-linearities, fewer
parameters for same receptive field.

• Use stride 2 for downsampling (vs pooling)
• Common: [CONV-BN-RELU]·N-POOL
• FC layers have most params; use GlobAvgPool-

ing before FC
• Increase channels as spatial dims decrease
• Normalize inputs (subtract mean, divide by std)

CNN Architectures (chronologic)

• AlexNet: 1st CNN (ImgNet). ReLu, drop
• VGG Simple 3×3 conv stacks. Depth matters
• GoogLeNet/Inception: Parallel paths, dif-

ferent filter size, pooling.
• ResNet: Skip connections Ol = Il + F (Il)

Solves vanishing gradient in deep networks
• DenseNet: Each layer connect to all previous

Backprop in Conv Layers

Gradient w.r.t. input ∂L
∂X

is a full convolu-
tion with flipped kernel (180◦ rotated). Gradi-
ent w.r.t. filters ∂L

∂F
is a convolution between

input X and output gradient ∂L
∂Y

.

1D conv output (forward): zi =
∑

j kjxi+j−1 + b
∂L
∂kj

=
∑Wout

i=1
∂L
∂zi

xi+j−1
∂L
∂b

=
∑Wout

i=1
∂L
∂zi

Transformer

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V

Q,K, V are query, key, value project of input X√
dk is scaling factor (dk = key vector K dim)

Embed: vocab size×Dembedding

Posit Encod seq length×Dembedding

Self-Attent: X is used for Q,K, V (same source)
Masked Attention: Sets future positions to −∞
(decoders) before softmax

Multi-Head Attention (MHA):

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O

where headi = Attention(XW
Q
i , XW

K
i , XW

V
i )

• Per head h: W
Q
i ,WK

i ,WV
i ∈ Rdin×dk dk =

din
h

• Output projection: WO ∈ Rdin×din

• Parms: 4d2in + 4din (incl. biases)
• O(n2din + nd2in) for seq length n

1) Multi-Head Self-Att + Add&Norm

• Residual connection: LayerNorm(x+MHA(x))
• LayerNorm params: 2din (γ and β vectors)

2) Feed-Forward Network + Add&Norm
FFN(x) = max(0, xW1 + b1)W2 + b2

• W1 : din → dff , W2 : dff → din
• Typically dff = 4 · din
• Parms: 2din · dff + dff + din ≈ 8d2in
• Residual: LayerNorm(x+ FFN(x))
• LayerNorm params: 2din

Summary per Transform Block (per layer):

Tot pars: 12d2in +13din (NO embed, pos encod)
# matmuls: 4 from Self-attention + 2 from MLP
O(L(n2din + nd2in)) for L layers

Pre-Norm variant: LayerNorm placed before
self-att modules inside residual connection, more
stable than the original.

K-Nearest Neighbors (KNN)

Non-parametric lazy learning algorithm.

• Classify by majority vote K closest train exmpl.
• Higher K: smoother decision boundary, more

robust to outliers.
• Distance Metrics:

– L1 (Manhattan): d(I1, I2) =
∑

p |I1p − I2p|
(Sensitive to coordinate system rotation)

– L2: d(I1, I2) =
√∑

p(I1p − I2p)2 (rotat invariant)

• Training time: O(1) (store data).
• Test time: O(ND) to compare with N training

samples of D dimensions. Faster with approxi-
mate methods.

• Curse of dimensionality: Distances become less
meaningful in high dimensions.

Linear Classifiers

f(x,W, b) = Wx+ b (Scores for each class)

• W : weights (matrix of size [num classes ×
num features]). b: bias vector.

• Image input x often flatten into a column vect.
• Decision boundary is linear.
• Training time (e.g., SGD): O(NKD) per epoch

if N samples, K classes, D features.
O(KD) per mini-batch update.

• Params = Din + 1
• Test time: O(KD) per sample.
• Template matching if visualize weights.

Recurrent Neural Networks

Vanilla RNN:
Process sequential data by storing a hidden state.

ht = tanh(Whhht−1 +Wxhxt + bh)

yt = Whyht + by

Params: d2h + dxdh + dhdy + dh + dy
Complex: O(nd2) for seq length n, hidden size d
Issue: Vanish/explod grad over long sequences

LSTM

ft = σ(Wf [ht−1, xt] + bf ) (forget gate)

it = σ(Wi[ht−1, xt] + bi) (input gate)

C̃t = tanh(WC [ht−1, xt] + bC)

ot = σ(Wo[ht−1, xt] + bo) (output gate)

Ct = ft ⊙ Ct−1 + it ⊙ C̃t (cell state)

ht = ot ⊙ tanh(Ct) (hidden state)

Params: 4× ((dh + dx)× dh + dh)
Solves vanish grad through gating mechanisms
Complexity: O(nd2)

GRU (Gated Recurrent Unit)
Simpler alternative to LSTM with fewer parms.

Efficient Conv Implementation

• im2col: Input image patches are rearranged
into columns of a matrix. Filters are also ar-
ranged as rows. Convolution becomes a single
large matrix multiplication (GEMM).

• GEMM (General Matrix Multiplication)
• FFT-based convs: Efficient for large filters,

uses O(N logN) complexity. FastFourierTrans.

Vision Transformer (ViT)

• Split img to patches, project to embedding dim
• Add positional embed + prepend CLS token
• Process with transformer encoder with O(n2)
• No CNN operationss - relies on self-attention
• Classificat from CLS token or pooled featuresn

MoE: E experts per layer, activ A < E per token

• Filter Visualizat: Direct viz of learned filters
• Saliency Maps: Compute gradient of class

score ∇xSc(x) - which pixels matter
• Class Activation Mapping CAM:

Mc(x, y) =
∑

k wk,cfk(x, y) requires GlobAvg-
Pool; CNNs with GAP before final FC layer

• Grad-CAM: General CAM for any CNN.

1. Semantic Segmentation
Label each pixel with semantic category
Sliding window → Fully convolutional (FCN)
U-Net: Encoder-decoder with skip connections
Upsampling: Transposed conv, max unpool

2. Object Detection
Classify + locate objects with bounding boxes
R-CNN: Extract regions → classify each inde-
pend. Fast R-CNN: Shared conv features + RoI
pooling. Faster R-CNN: Add Region Proposal
Network (RPN) with anchor points. YOLO:
Single-stage detector, grid-based approach

3. Instance Segmentation
Mask R-CNN: Faster + mask prediction branch
RoI Align for better feature alignment

Transfer Learning
• Pretrain CNN, then remove original classifier
• Feature Extraction: Freeze pretrained, train

only new classifier
• Fine-tuning: Train whole net with small LR
• Early layers=general featur, later=task-specific
• Effective for small target datasets

3D Conv Networks for Video

3D Convolution (T= No. frames):

• Input: Video clip of shape C × T ×H ×W
• Kernel: 3D filter of shape

Cout × Cin × Tkernel × Hkernel × Wkernel

• Temporal stride controls temporal downsampl
• Parameters:

(Tkernel × Hkernel × Wkernel × Cin + 1) × Cout

• Complexity:
O(Tout × Hout × Wout × Cout × Cin × Tkernel ×
Hkernel × Wkernel)

Video Understanding Approaches:

• 2D CNN (Single-frame): Process each frame
independently

• Early Fusion: Stack frames along channel
dimension at input. Late Fusion: Process
frames separately, fuse features later

• 3D CNN: Use 3D convs throughout network
• (2+1)D CNN: Factorize 3D conv into spatial

2D + temporal 1D

Common Architectures:
• C3D: 3D version of VGG
• I3D: Inflated 3D nets from 2D pretrain models
• SlowFast: 2-branch net for slow and fast motion
• Video Transfmr: Apply self-att to video tokens

METRICS

• Accuracy: Correct / Total
• Precision: TP / (TP + FP) - Of predicted

positive, how many correct?
• Recall: TP / (TP + FN) - Of actual positive,

how many found?
• F1: 2× (Prec×Recall)/(Prec+Recall)

• IoU: Overlap
Union

(for detection/segmentation)
• mAP: Mean Average Precision across classes


