Activation Functions
Sigmoid: o(z) = ﬁ, % = o(z)(1 — o(x))
Output: (0, 1); Not zero-centered; Saturates. Not
for hidden layers. 4 FLOPS/element.

Tanh: tanh(z) = 2112:; dtde;“h =1 — tanh?(x)

Output: (—1,1); Zero-centered; Still saturates.

x>0
<0
verge; No saturation; May ’die’ if x < 0. 1 FLOP.

1
ReLU: max(0,z), -+ =

7 Fast con-
x 0

Leaky ReLU: max(ox,z), o small (e.g., 0.01)
Fixes dying ReLU problem.

ParamReLU: LeakyReLU, but « is learnable.

ELU: { " , @ > 0 ReLU benefits
ae®—1) <0

+ mean closer to zero. Computational expensive.

x>0

GELU: z®(z) where ® is normal CDF. Used in
transformers.

Softmax:j; = Liz] (For multi-class output)

Zj €
3 x N FLOPs (exp + sum + divide)

Loss Functions

SVM Loss (Hinge):

Li =37, max(0,s; — sy; + A)

A = margin (usually 1). Wants correct class score
higher by A.

Softmax Loss (Cross-Entropy):
Syg
L; = —log (ZSJ =57 )

correct class. Comparable to SVM.

Maximizes probability of

Binary Cross-Entropy:
L= —(ylog(9) + (1 —y)log(1 — 9))

Regression:
MSE: >, (y: — §:)% MAE: 3, |y: — 6l

Optimization

SGD: W = W — aVy L Simple but slow conver-
gence and noisy updates.

SGD+Momentum:
v=pv+aVwlL
W=W-—v

Dampens oscillations, faster convergence.

AdaGrad (adaptive gradient): slow, saddle pt

L
c=c+ (VwL)? W=WfaVL

Vete

Per-parameter LRs; accumulation can stop learn.

RMSProp:

VwL
=4 1—8)(VwL)?

c=B-ct (1-B)(VwL) N
Fixes AdaGrad’s diminishing LRs by using exp

moving avg instead of grad accumulation.

W=W -«

Adam:

v = v+ (1 — ;32)(VWL)2

m = pfim+ (1 —-pB1)VwL
m v

— 0=
1- 8 - 54

W=W -«

m =

VD + e

Combines 1st and 2nd momentum (RMSProp)
and adaptive LRs. Adds bias corrections.

LR Schedules: Step decay: ag - v!/s] Exp de-

cay: ag - e~ * or 1/t decay: %

Computational Graphs & Backprop

Local Gradients:

o Add: w =1, 8(:;7;:9) =1 (Distributor)
e Multiply: % =y, %;) = z (Switcher)
o ReLU: 2max(02) _ 11 5 0) (Router)

oz
e Max: % =I(z > y) (Selector)

Grad Check: % 2 W, h is small

Regularization

L2 Reg: R(W) = 3 Y. W2, Grad: AW. Penal-
izes large weights; encourages diffuse weights.

L1 Reg: R(W) =AY |W|. Grad: X -sign(W).
Encourages sparse weights (many exactly zero).

Elastic Net: R(W) =X\ S |W|+ X S W?2

Dropout:
Zero rand activations with prob p during training.

%p (inverted drop)

e Scale remaining output: I

e No dropout at test time
e Prevents neurons co-adaptation; can be seen as
an ensemble of neural nets.

Data Augmentation: Crops, flips, rotations,
color jitter, mixup, cutout

Early Stopping: Stop when val loss increases.
Can prevent overfitting.

Training Issues & Solutions

Gradient Problems

Vanishing Gradients: Causes: Sigmoid/tanh
saturation, deep networks

Solutions: ReLU, residual connections,
He/Xavier, batch norm, use LSTM or GRU

Exploding Gradients: Solution: Gradient clip-
ping (if norm > threshold), good init, batch norm

Weight Initialization

Zero: Bad (neurons learn same features) Small
Random: W ~ N(0,02). Ok for small nets.
Xavier/Glorot: Good for tanh/sigmoid; pre-

serves variance He: W ~ N(0, , / %) Better for
ReLU; accounts for ReLU drop half activations

Troubleshooting

Loss not decreasing: Check gradien, adjust LR
Overfitting: 1 regulariz, data augment, smaller
model, early stop. Underfitting:

T model capacity, train longer, | regularization
Loss explodes: LR too high, bad initialization
No initial progress: LR too low/high, bad init
First layer visualizations: Should show pat-
terns (edges, blobs, textures).

Normalization Layers

Batch Normalization (BIN)

T — HKB
1101234»6

Trainable Params: 2 x C' (v, 8 per channel)
For ConvNets: Normalizes per channel across
(N,H,W) dims. Test time: Uses running avg of
u, o2 Benefits: Better grad flow, higher LRs, acts
as regularizer, reduces sensitivity to initialization.

T =

y=n~&+8

Layer Normalization (LN)

Normaliz across features for each sample. Consis-
tent in train/test; effective in RNNs/Transformers

Instance Normalization

Normalizes across HXW per channel and sample.

Convolutional Neural Networks

Convolution Layer

Hyperparams:
K = # filters, F' = filter size, S = stride, P = pad

Output Dimensions:
Win(or Hyp) — F + 2P
Wout(or Hout) = ”L( ZT‘;,)
Dy, = #channels input

+1

Dout = K

Output Volume: Wiyt - Hout - K
Parameters: (F2.D;, +1)-K

FLOPs: O(N - F? - Dip - Dout - Hout - Wout)

1x1 Conv:
nonlinearity

Channel-wise dim reduction, adds

Depthwise Separable Conv:

e Depthwise: One filter per input channel
e Pointwise: 1x1 conv to mix channels
e Params: F2D;,, + DinDout vs. F2D;pDout

Dilated Conv: Expands receptive field without
T params. Fefrr = F 4+ (F —1)(d—1)

Transposed Conv: For upsampling
Wout:(Win—l)~S+F—2P

Receptive Field r

Single layer: r = F' (kernel size)
Stacked layers:

-1

ro=r_1+FE -1 ]]s

i=1
where 7o = 1, F; = kernel size at layer [, s; =
stride at layer ¢
Same stride/kernel: For L layers with same
kernel F' and same stride s = 1:

r=1+L-(F-1)

Pooling Layer
F = pool size, S = stride (typically S = F)
Output dims: Same formula as conv with P = 0

Max Pooling: Takes max in window. Gradients
flow only to max element.
FLOPS = Hout X Wout x C

Avg Pooling: Takes average in window. Gradi-
ents distributed. FLOPS = Hoyut X Wour X C X
(k%2 — 1), for k x k kernel

Global Avg Pooling:
Averages over entire spatial dimensions.

Params: 0 (no learnable params)

Convolution Properties

e Translation Equivariance:

Shift input — shift output
e NOT Rotation/Scale Invariant

Requires data augmentation for this
e Parameter Sharing: Fewer params than FC
e Local Connectiv: Neurons see local regions
e Hierarchical Features:

Edges — textures — patterns — objects



Parameter Count Formulas

FC: (Dzn + 1) X Doyt and O(Nneu'ron . Minput)
FLOPS = 2 x Nbatch X Ninput X Noutput
with bias (2 X Ninput — 1) X Noutput + Noutput

Conv2D: (Fj, x Fyy X Djp + 1) X Doyt
Conv3D: (Fyepin X Fr X Fy X Dijn +1) X Dout
BN/LN: 2 x C (v, 8 trainable per channel.
Otherwise 4 = 2 trainable 4+ 2 non train)

CNN Architecture Tips

e Prefer stacks of small filters (e.g., 3 x 3) over one
large filter. Deeper, more non-linearities, fewer
parameters for same receptive field.

e Use stride 2 for downsampling (vs pooling)

e Common: [CONV-BN-RELU]-N-POOL

e FC layers have most params; use GlobAvgPool-
ing before FC

e Increase channels as spatial dims decrease

e Normalize inputs (subtract mean, divide by std)

CNN Architectures (chronologic)

e AlexNet: 1st CNN (ImgNet). ReLu, drop

e VGG Simple 3x3 conv stacks. Depth matters

e GoogLeNet/Inception: Parallel paths, dif-
ferent filter size, pooling.

e ResNet: Skip connections O; = I; + F(I;)
Solves vanishing gradient in deep networks

e DenseNet: Each layer connect to all previous

Backprop in Conv Layers

Gradient w.r.t. input g—)lé is a full convolu-

tion with flipped kernel (180° rotated). Gradi-
9L

ent w.r.t. filters 5F isa convolution between

input X and output gradient %

1D conv output (forward): z; = > kj@itj—1 +b

8L _ ~~Wout 8L .. . L __ ~Wout 8L
ok, = 2ui=1" Bz Titi-1 o = 21" ba
Transformer

. QKT
Attention(Q, K, V) = softmax \%
Vdy,
Q, K,V are query, key, value project of input X
Vdy, is scaling factor (d = key vector K dim)
Embed: vocab_size X Dempedding
Posit Encod seq_length X Dempedding

Self-Attent: X is used for Q, K,V (same source)
Masked Attention: Sets future positions to —oco
(decoders) before softmax

Multi-Head Attention (MHA):
MultiHead(Q, K, V) = Concat(headq, ..., headh)Wo
where head; = Attention(XWiQ s XWiK s XWiV)

din

h

Per head h: W2, WK, w)Y € rdinXdk
Output projection: WO g Rdin Xdin
Parms: 4d?, + 4d;, (incl. biases)
O(n%d;n + nd2)) for seq length n

dy, =

1) Multi-Head Self-Att + Add&Norm

e Residual connection: LayerNorm(z + MHA(z))
e LayerNorm params: 2d;, (v and 8 vectors)

2) Feed-Forward Network + Add&Norm
FFN(z) = max(0,zW1 + b1)Wa2 + b

Wi :dip — dff7 Wy . dff — din
Typically dfy =4 - din

Parms: 2d;, - dff —+ dff + dip & Sd?n
Residual: LayerNorm(z + FFN(x))
LayerNorm params: 2d;,,

Summary per Transform Block (per layer):

Tot pars: 12d12n +13d;n, (NO embed, pos encod)
# matmuls: 4 from Self-attention + 2 from MLP
O(L(n2d;y +nd2))) for L layers

Pre-Norm variant: LayerNorm placed before
self-att modules inside residual connection, more
stable than the original.

K-Nearest Neighbors (KNN)

Non-parametric lazy learning algorithm.

e Classify by majority vote K closest train exmpl.

e Higher K: smoother decision boundary, more
robust to outliers.

e Distance Metrics:

— L1 (Manhattan): d(l1,l2) = >°, [11p — I2p]
(Sensitive to coordinate system rotation)
— L2: d(1y,12) = > pI1p — I2p)? (rotat invariant)

e Training time: O(1) (store data).

e Test time: O(ND) to compare with N training
samples of D dimensions. Faster with approxi-
mate methods.

e Curse of dimensionality: Distances become less
meaningful in high dimensions.

Linear Classifiers

f(x,W,b) = Wz + b (Scores for each class)

o W: weights (matrix of size [num_classes X
num_features]). b: bias vector.

e Image input x often flatten into a column vect.

e Decision boundary is linear.

e Training time (e.g., SGD): O(NK D) per epoch
if N samples, K classes, D features.
O(K D) per mini-batch update.

e Params = D;,, +1

e Test time: O(K D) per sample.

e Template matching if visualize weights.

Recurrent Neural Networks
Vanilla RNN:

Process sequential data by storing a hidden state.
hi = tanh(Wpphe—1 + Wypat + bp)
yt = Whyhe + by
Params: d2 + dgdy, + dpdy + dj, + dy
Complex: O(nd?) for seq length n, hidden size d
Issue: Vanish/explod grad over long sequences

LSTM

ft = c(Wyglhy—1,z¢] +by) (forget gate)
it = o(Wilhe—1, 2] + b;)
Cy = tanh(Welhe—1, @¢] + be)
ot = o(Wolhy—1,x¢] + bo)
Ci=ft ©Ce_1+it ©Cy
ht = ot ® tanh(Ct) (hidden state)

(input gate)

(output gate)

(cell state)

Params: 4 X ((dp, + dz) X dp, +dp)
Solves vanish grad through gating mechanisms
Complexity: O(nd?)

GRU (Gated Recurrent Unit)
Simpler alternative to LSTM with fewer parms.

Efficient Conv Implementation

e im2col: Input image patches are rearranged
into columns of a matrix. Filters are also ar-
ranged as rows. Convolution becomes a single
large matrix multiplication (GEMM).

¢ GEMM (General Matrix Multiplication)

e FFT-based convs: Efficient for large filters,
uses O(N log N) complexity. FastFourierTrans.

Vision Transformer (ViT)

e Split img to patches, project to embedding dim
e Add positional embed + prepend CLS token
e Process with transformer encoder with O(n?)
e No CNN operationss - relies on self-attention
e Classificat from CLS token or pooled featuresn

MOoE: FE experts per layer, activ A < E per token

e Filter Visualizat: Direct viz of learned filters

e Saliency Maps: Compute gradient of class
score V. Sc(x) - which pixels matter

e Class Activation Mapping CAM:
Mc(z,y) = >4 wk,efu(x,y) requires GlobAvg-
Pool; CNNs with GAP before final FC layer

e Grad-CAM: General CAM for any CNN.

1. Semantic Segmentation

Label each pixel with semantic category

Sliding window — Fully convolutional (FCN)
U-Net: Encoder-decoder with skip connections
Upsampling: Transposed conv, max unpool

2. Object Detection

Classify + locate objects with bounding boxes
R-CNN: Extract regions — classify each inde-
pend. Fast R-CNN: Shared conv features + Rol
pooling. Faster R-CNN: Add Region Proposal
Network (RPN) with anchor points. YOLO:
Single-stage detector, grid-based approach

3. Instance Segmentation
Mask R-CNN: Faster + mask prediction branch
Rol Align for better feature alignment

Transfer Learning

Pretrain CNN, then remove original classifier
Feature Extraction: Freeze pretrained, train
only new classifier

Fine-tuning: Train whole net with small LR
Early layers=general featur, later=task-specific
Effective for small target datasets

3D Conv Networks for Video
3D Convolution (T= No. frames):

e Input: Video clip of shape C x T'x H x W
e Kernel: 3D filter of shape
Cout X Cin X Tkernel X Hiernet X Wkernel
e Temporal stride controls temporal downsampl
o Parameters:
(Tkernet X Hiernel X Wrernel X Cin +1) X Cout
o Complexity:
O(Tout X Hout X Wout X Cout X Cin X Thernel X
Hiernel X Wkernel)

Video Understanding Approaches:

e 2D CNN (Single-frame): Process each frame
independently

e Early Fusion: Stack frames along channel
dimension at input. Late Fusion: Process
frames separately, fuse features later

e 3D CNN: Use 3D convs throughout network

¢ (24+1)D CNN: Factorize 3D conv into spatial
2D + temporal 1D

Common Architectures:

e C3D: 3D version of VGG

e I3D: Inflated 3D nets from 2D pretrain models

e SlowFast: 2-branch net for slow and fast motion

e Video Transfmr: Apply self-att to video tokens

METRICS

e Accuracy: Correct / Total

e Precision: TP / (TP + FP) - Of predicted
positive, how many correct?

e Recall: TP / (TP + FN) - Of actual positive,
how many found?

e F1: 2 x (Prec x Recall)/(Prec + Recall)

e IoU: % (for detection/segmentation)

e mAP: Mean Average Precision across classes



